
8 • VIRUS BULLETIN AUGUST 2002

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

Un combate con el Kerñado
Peter Ferrie
Symantec Security Response, Australia

W32/Elkern could be considered the ‘little brother’ of
W32/Klez. Even though Klez carries the Elkern virus and
runs it on the machines that Klez infects, it is Klez that has
received all the attention. Little mention is ever made of
Elkern, and some of the details of its behaviour have
remained unexplained. They are described here.

There are three variants of Elkern. The first, which is 3326
bytes long, is carried by Klez variants A to D, F and G; the
second Elkern variant, which is 3587 bytes long, is carried
by Klez.E, and the third, which is 4926 bytes long, is
carried by Klez variants H to L.

Elkern.3326 and Elkern.3587

Both Elkern.3326 and Elkern.3587 can exist in two formats:
as a DLL or as an executable file. When the viral code gains
control for the first time, if it is loaded as an executable file,
it will always run, but if it is loaded as a DLL the viral code
will run only during the DLL_PROCESS_ATTACH event.

Windows N(o)T

If the code is run, Elkern will search memory for
kernel32.dll and get the addresses of the APIs that it
requires. The first major bug in the virus occurs here: the
API names are converted to a 32-bit CRC value, but Elkern
compares only the lower 16 bits of this value. This results
in the retrieval of the wrong API addresses under Windows
NT, where several of the calculated values differ only in the
upper 16 bits.

This mistake has been made repeatedly by virus authors,
including the author of W32/Kriz, and is likely to continue
as the majority of computer users (including virus authors)
skip Windows NT in favour of Windows 2000 and XP.

If a debugger seems to be running, Elkern will stop running
at this time.

Must Run, Back Soon

If Elkern was not loaded as a DLL, it will copy itself to
%system% and alter the Registry. Under Windows 9x/ME,
the filename will be ‘wqk.exe’ and the Registry entry
‘HKLM\Software\Microsoft\Windows\CurrentVersion\Run’
will contain a value called ‘WQK’, which points to
%system%\wqk.exe.

Elkern will also call the RegisterServiceProcess() API, if it
exists, in order to remove the Elkern process from the task

list. Under Windows 2000/XP, the filename will be ‘wqk.dll’
and the Registry entry ‘HKLM\Software\Microsoft\
WindowsNT\CurrentVersion\Windows’ will contain the
value ‘AppInit_DLLs’, pointing to ‘wqk.dll’. Any previous
data for this value are lost.

The AppInit_DLLs is an interesting value. It exists in
Windows NT/2000/XP, and the files in the value data are
loaded into the process memory of all processes that run
after the Registry change has been made.

Furthermore, if the computer is rebooted, these files will
load into critical system processes, such as Winlogon. This
poses a problem for anti-virus software that terminates
processes containing viral code: terminating the Winlogon
process will cause Windows to display the dreaded blue
screen of death.

Elkern calls the routine repeatedly to copy the file and alter
the Registry, at random intervals from one to seven
seconds, requiring much speed (or luck) in order to disable
it successfully.

What are my Chances?

At this point, Elkern enters the loop that searches repeat-
edly for files to infect. Before each location is searched,
Elkern will check whether the payload should activate. The
payload will always activate on 13 March and 13 Septem-
ber, but there is a small chance that the payload will be
activated regardless of the date.

Though small in isolation, the chance of payload activation
is increased greatly by the repeated checking process.

Elkern begins searching for files to infect in %system% and
in the current directory. Next it will search on drive letters,
beginning with a random letter and continuing until it
reaches Z, before resuming from A. Under Windows
2000/XP, or if the WQK file was the one that launched this
code, Elkern will also enumerate open shares on the local
network to find files to infect.

Fuel Injection

During the file search, Elkern will open every file, regard-
less of extension. If the payload has been activated, Elkern
will overwrite the entire file with zeros. If the payload has
not been activated, Elkern will examine the file for its
potential to be infected. Files will be infected if they are at
least 8 KB PE files and are neither WinZip self-extractors
nor DLLs.

Elkern.3587 also avoids RAR self-extractors, and files
protected by the System File Protection. The infection
method is very similar to that used by W95/CIH. The viral

VIRUS ANALYSIS 2

VIRUS BULLETIN AUGUST 2002 • 9

VIRUS BULLETIN ©2002 Virus Bulletin Ltd, The Pentagon, Abingdon, Oxfordshire, OX14 3YP, England. Tel +44 1235 555139. /2002/$0.00+2.50
No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form without the prior written permission of the publishers.

code is split into a linked list of blocks that are placed in the
unused space at the end of sections in the file.

Since Elkern is so large, it will increase the size of the last
section if there is insufficient unused space available
elsewhere in the file. The entry point is altered to point
directly to the Elkern code. Elkern.3587 will recalculate the
checksum if one existed before.

Elkern.4926

If the previous Elkerns were a brick wall, then Elkern.4926
would be a rock wall constructed without mortar. It looks
like a hurried work, unfinished and fatally buggy. It exists
only as an executable file infector. It contains some of the
same bugs that exist in the previous Elkerns (for example,
the 16-bit comparison of the CRC32 value).

Whenever Elkern.4926 is run, it alters its appearance
slightly. Elkern has many subroutines that are encrypted
individually, and whose keys are altered each time the
subroutines are used.

Additionally, Elkern has several routines for altering the
code of several other routines, however these alterations are
limited to register replacement and alternative encodings of
some instructions.

Dude, where’s my Code?

Elkern.4926 will inject its code into the memory of certain
processes. If the process enumeration functions are found,
Elkern will open all processes under Windows 2000/XP, and
any process whose name contains ‘\explorer’ under Win-
dows 9x/ME.

If the enumeration functions are not found, Elkern will
attempt to open any accessible process, by cycling through
20,000 different process IDs. Once Elkern has opened a
process, it will read from a fixed image base value of
0x400000. This is unusual behaviour because the true
image base of a process can be retrieved using the enumera-
tion functions.

Elkern will then search the import table of the process
for a reference to ‘user’. If this is found, Elkern will
search a random number (0–63) of imports for either the
DispatchMessageA function or the DispatchMessageW
function.

Regardless of the success of the search, Elkern will hook an
import. If the search was successful, Elkern will hook the
last import that was examined; otherwise, it will hook the
second last import that was examined. This routine is
executed repeatedly, with a small delay between each run.

Elkern begins searching for files to infect in the current
directory. Then it searches on drive letters, beginning with a
random letter and continuing until Z is reached, before
resuming from A. It will also enumerate open shares on the
local network to find files to infect.

The file search will skip directories that contain ‘rary Inter’
or ‘tem32\dllcac’. A misfeature of the name comparison
algorithm is that files and directories are also skipped if
they begin with certain characters, such as the letter ‘n’.

Additionally, files are skipped if they begin with any of the
following: _avp, aler, amon, anti, nod3, npss, nres, nsch,
n32s, avwi, scan, f-st, f-pr, avp, nav.

Considering the number of names in this list that begin with
‘n’, it appears that the virus author is unaware of the
comparison bug. Files will be examined if their suffix is
.exe or .scr, but there is a small chance that files with other
extensions will be examined too.

Elkern considers a file to be infectable if it is a PE GUI or
console application that is not a DLL, does not contain the
text ‘irus’, is not protected by the System File Checker that
is present in Windows 98/ME/2000/XP, and is neither a
WinZip nor RAR self-extractor.

There is also a process to check whether the file is already
infected but, due to a bug in the virus, this check always
fails. The result is that files are reinfected repeatedly,
eventually becoming too large to execute.

The file infection procedure for Elkern.4926 is identical to
that of the previous variants: the viral code is split into a
linked list of blocks that are placed in the unused space at
the end of sections in the file, and the size of the last section
will be increased if there is insufficient unused space
available elsewhere in the file.

If the file contains relocations near the entry point, the entry
point will be altered to point directly to the Elkern code.
Otherwise, Elkern will place a jump at the original entry
point that will point to the Elkern code. If the host con-
tained a checksum, Elkern will recalculate it now.

Conclusion

W32/Elkern shows how even a buggy virus can become
widespread, by being associated with a virus that is even
more prolific.

Fortunately, Elkern does not stand well on its own. For the
moment, at least, this battle is half over.

W32/Elkern

Type: Memory-resident parasitic
appender/inserter.

Infects: Windows Portable Executable files.

Payload: Elkern.3326, and .3587 overwrite all
files on 13 March and 13 Septem-
ber. Elkern.4926 has no payload.

Removal: Delete infected files and restore
them from backup.

